skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Pai, Archana"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Free, publicly-accessible full text available September 1, 2026
  2. We present an enhanced method for the application of Gaussian mixture modeling (GMM) to the coherent WaveBurst (cWB) algorithm in the search for short-duration gravitational wave (GW) transients. The supervised machine learning method of GMM allows for the multidimensional distributions of noise and signal to be modeled over a set of representative attributes, which aids in the classification of GW signals against noise transients (glitches) in the data. We demonstrate that updating the approach to model construction eliminates bias previously seen in the GMM analysis, increasing the robustness and sensitivity of the analysis over a wider range of burst source populations. The enhanced methodology is applied to the generic burst all-sky short search in the LIGO-Virgo full third observing run (O3), marking the first application of GMM to the 3 detector Livingston-Hanford-Virgo network. For both 2- and 3- detector networks, we observe comparable sensitivities to an array of generic signal morphologies, with significant sensitivity improvements to waveforms in the low quality factor parameter space at false alarm rates of 1 per 100 years. This proves that GMM can effectively mitigate blip glitches, which are one of the most problematic sources of noise for unmodeled GW searches. The cWB-GMM search recovers similar numbers of compact binary coalescence (CBC) events as other cWB postproduction methods, and concludes on no new gravitational wave detection after known CBC events are removed. Published by the American Physical Society2024 
    more » « less
  3. Abstract The global network of gravitational-wave detectors has completed three observing runs with ∼50 detections of merging compact binaries. A third LIGO detector, with comparable astrophysical reach, is to be built in India (LIGO-Aundha) and expected to be operational during the latter part of this decade. Such additions to the network increase the number of baselines and the network SNR of GW events. These enhancements help improve the sky-localization of those events. Multiple detectors simultaneously in operation will also increase the baseline duty factor, thereby, leading to an improvement in the detection rates and, hence, the completeness of surveys. In this paper, we quantify the improvements due to the expansion of the LIGO global network in the precision with which source properties will be measured. We also present examples of how this expansion will give a boost to tests of fundamental physics. 
    more » « less